
gents are  different. This difference is most  important  for c 2 = 1. Therefore,  the solutions obtained with and 
without account of the nonlinearit ies of the equation of state of the liquid can differ f rom each other. Thus, 
Fig. 6 shows the dependence of the soliton amplitude on the square of its velocity (e 2 < c 2 <_ c2). Curve 1 
corresponds  to a l inear  equation of state of the liquid, and curve 2 - to the nonlinear. The equilibrium state of 
the medium at ~e = + ~ is of the form Pe = 2P0, VeT = Pc/P0 = 2, k e = 10 TM, Ve = 0, T = 1, 4, P0 = 105 Pa/p0c~ �9 
It is seen that for solitons whose velocit ies squared are  smal le r  than 0.9 the amplitude coincide for the l inear 
and nonlinear equations of state of the liquid. For  c 2 > 0.9 the amplitudes differ substantially. 

Thus, the exact solution of the nonlinear equations of motion of a liquid with gas bubbles has been ob- 
tained for one-dimensional  s tat ionary perturbat ions.  In this case account of the hydrodynamic nonlinearity and 
of the compress ib i l i ty  of the liquid component of the medium leads to an extended class of s tat ionary solutions. 

The author is grateful  to V. K. Kedrinskii  for his interest  in this work and for useful discussions.  
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PROBLEM OF NONSTATIONARY TRANSPORT 

PHENOMENA IN MULTIPHASE MEDIA 

Yu.  V. P e r v u s h i n  UDC 541.182:532.7:539.219.3 

Nonstat ionary t ranspor t  phenomena in multiphase medium in many ways are  determined by kinetic pro-  
cesses  at the interfaces.  The s implest  idealizations, introduced during F o u r i e r ' s  and Fick ' s  t imes, when in- 
terphase kinetics were given by the boundary conditions of the type 

O n J O R  = a~.~(nl - -  n.~)~, 

cannot ref lect  the basic features of t ranspor t  p rocesses  when the physical  conditions at the interfaces change 
considerably and rapidly. This especial ly concerns problems with mobile boundaries,  arising,  for example, in 
analyzing the kinetics of phase t ransformat ion  [ 1-5]. In the spherical  variant,  nonstat ionary effects ar ise ,  in 
par t icular ,  due to Laplacian p res su re ,  which is d e a r l y  related to the motion of the boundary (~ 1 /R (t)). 

We shall give a derivation of the general  type of boundary kinetics, based on the process  of one-dimen-  
sional t ranspor t  of a fixed component of mat ter  through the interface R of two media (phases), which is the 
surface of discontinuity for the concentrat ion field of the given component. We shall examine the model indi- 
cated schemat ical ly  in Fig. 1. It assumes  that the volume of the media can be separated into some elementary 
regions of molecular  size at and, in addition, they can vary  in time kineticaIly and deformationally,  i.e., a i = 
a i ( t ) .  For  solid media, the pa rame te r  a i  cor responds  to a constant lattice, while for gas media it corresponds 
to the free path of par t ic les .  We assume that the motion of par t ic les  occurs  in some potential field, whose av- 
erage rel ief  is shown schemat ica l ly  in Fig. 1. The presence  of external and internal fields introduces an 
a s y m m e t r y  into the potential rel ief  of the par t ic les ,  changing the kinetics of their t r ans fe r  in the forward and 
backward direct ions.  In what fo!lows, the average velocit ies of such random wandering Wi will be distinguished 

Donetsk. Transla ted f rom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 82-88, Janu-  
a r y - F e b r u a r y ,  1983. Original ar t ic le  submitted August 27, 1981. 

0021-8944/83/2401-0071507.50 �9 1983 Plenmn Publishing Corporat ion 71 



4-4-- ! % 

I " 

phase 1 phase 2 

Fig. 1 

by orientations of arrows. In addition, we shall assume that the dimensions X i (t) of the unit cells, directly ad- 
jacent to the boundary, are distorted and differ from the bulk cells. The model of the phases proposed com- 
bines to some extent the elements of discrete and continuous models. 

In accordance with the kinetic scheme in Fig. 1, the conservation laws for the number of particles for 

two elementary boundary regions, adjacent to the boundary on the left and the right, have the form 

0 k2 

nl (R + z, t) dz. = '  
--~'I(0 

0 O 

t " [ W l s  _ ~  Wit( B k l ~ _ z , t ) n l ( R _ ~ , l + z , t ) d z  ' 
- -  ~ 1  1 " �9 _ - - a  1 

' ~ S ( t )  o 

o . . 1 5 _ k l .  ] 

a s  

~'f t ! Ws~ (R ~ ks ~ z, t) n~ (R Q- ks +'z, t) dz,. i '[W~l(R~Uz, t) n s ( R - ~ z , t ) ~ W s t (  R + z , t )  n 2(R~uz,t)]dz +a~ . . . .  

where ni a r e  the boundary concentra t ions  of the component  examined on the lef t  and r ight  side of the boundary 
R. The ave rage  veloci t ies  of wandering Wit, Wi~, and the ave rage  veloci ty  of c ross ing  through the boundary 
Wij  a r e  calculated by averaging  over  the cor responding  par t ic le  dis t r ibut ion functions in a given direct ion tak-  
ing into account  the t r a n s f e r  probabi l i t ies .  Expanding and taking into account  the t r anspor t  equation within the 
volume of the phases ,  which follow f rom analogous conserva t ion  laws for  the e l e m e n t a r y  regions  (x �9 a i /2 )  and 
have the fo rm 

On i o.r~ �9 o (DinO, ~ ( 1 ) o-Y = --  ~ -- ~i (nO m, J~ = vim -- 

where v~ ~ ----- W~t --  W~; D~ =-: a~ " I 0a~ (W~r + W~,); ~ (a0 := ~ 0t ' we obtain up to t e r m s  l inear  with r e s p e c t  to the p a r a m e -  

t e r s  a i  and Xi that  the boundary  kinet ics  a r e  desc r ibed  by the sy s t em of equations 

8~OnJOt = ulln~ @ u~sns + O~OnjOB + DI~OndOR, (2) 
8~On~/Ot = us~nl + us~n~ + DslOnl/OR + D~On~/OR, 

3 a i 3 ' 

" " ' ( ~,s) OD~ Wsl. ~',,OWsl t ( S  a~+3Xs~ ~ ' I ( ~- 2 ~ ) "  = ~ , , ;  - ,~ (a~) (X~); 

ks OWs~ ' )~i OW~s 

W S l ;  

k s  W " . : - -  i01s = -~ ~, Ds~ ~ W~. 
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The boundary kinet ics  a re  sens i t ive  to the s t ruc tu re  of the boundary layer .  F o r  two var ian ts ,  when 
Xi/ai = 1/2 and 1, 6 i = 0 and the boundary conditions a re  close to the t radi t ional  form.  

In the spher ica l  ease ,  the boundary conditions on the sur face  of the sphere  a r e  l ikewise de te rmined  by 
the fo rm (2), but the kinetic coefficients  uii and Dii contain, r e spec t ive ly ,  the additional t e r m s  

-~ t Di. g-fit a~+ 2 : 2 -  3Ei v' + a i . ~ -  1 ) - b N J ' a i  ~a~ 

The boundary kinetics in this case depend explicitly on the coordinates of the interface R. Additional 

terms will be important only in describing the evolution of micronuclei with dimensions R ~ h~/a i. 

Boundary conditions of the type (2) must also occur for nonstationary heat transfer. However, their 

derivation involves considerable difficulties, stemming from the fact that the transfer of energy occurs along 

several channels: radiation, collisions, reactions, etc. 

Let us consider the case of moveable interfaces, emphasizing processes such as vaporization, dissolu- 

tion, melting,  and the r e v e r s e  p r o c e s s e s .  Fo r  def ini teness ,  we shall  examine a finite two-phase  s i n g l e - c o m -  
ponent sys t em,  closed in the sense  that there  is no exchange of pa r t i c l e s  with an externa l  medium.  Let  us 
a s s u m e  that the ent i re  s y s t e m  occupies the in te rva l  (0, L) and, in addition, the or igin is fixed to phase  1. In 
this case ,  the veloci ty  of d i sp lacement  of the in te r face  is de te rmined  by the conserva t ion  laws 

R(t) L 
0 ~ nl(x,t) dx_ o y  n2(x t)dx=J12('R,t) ' 

0 1~(t) 

where the cu r r en t  through the boundary is given by 

J~(R, t) . . . .  Wrz(R, t)n~(R, t)-~-Wzl(R, t)nz(R, t). 

Using the volume equations (1), we finally obtain 
. N~ (R, t) 

, n t (R, t) n 1 (R, t) 7~ -- W~z n 2 (1,', t) ' 
where 

1 On~ n~. (II, t) a D  1 
X~ ..... n~ (~,  t) ~ ,  Y : :  n 1 (R, t)' 71 : l-'1 - -  Wl~  - -  " ~ ' ,  7 .  := 

R:,) L (4 )  

l;2 -~ W21 ODioR ' N~ (R, t) := �9 n, (x, t) dx,  N~ (R,  t) = . n,  (x, t) dx. 
0 1 R(t) 

a n d  J2 ( L ,  t )  a p p e a r  i n  E q s .  ( 3 )  b e c a u s e  o f  t h e  r e s t r i c t i o n s  d u e  to  t h e  f i n i t e n e s s  a n d  The terms J1(0, t) 

closure of the two-phase system introduced above. It turns out that the finiteness of the system is explicitly 

manifested in the velocity of the interface. It is as if the.separating surfaces feel one another. We also note 

that the classical variant of Stefan's problem [6], when R = const (0n/0R), is an approximation, which is valid 

only in exceptional cases. 

We shall illustrate the variant when the kinetic parameters do not depend on time explicitly. In this case, 

there must exist a class of solutions when n i (t) = n i (R (t)), i.e., the change in concentrations at the interface 
in time is determined only by the displacement of the interface. From here we have 

Oni/Ot-= t~angOR. (5) 

Relations (3)-(5) transform the boundary conditions (2) to the form 

. ~ ~,+=\~.~s~ +w~ + ~ z  h u~ -  

D 1 DI= W12) " 3 ~ D =  D:l(  '1 - -]@/it1/ +:Y [~12Dl-4-~folDj_l: Jf-~ ~ D12 ('~, 1 ' ~ ) ]}  = 0; 

- +  <7) 

) ' ) [ = )]} 
where 
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11 =: Jl(0, t) -- (h(a,)/Yl(R, t), I~ .... Jo(L, t) + ~(a2)N2(R, t). (8) 

The final sys tem of equations (6) and (7) is an algebraic sys tem for the unknowns tt and Y = n2/nl, 
whose quite symmetr ica l  form indicates the simplici ty of the qualitative analysis  of the sys tem and its approx- 
imate solution. 

The consis tency of the two quadratic equations indicates that one of the roots 1~ I = fl(Y) of the f i rs t  equa- 
tion (6) necessar i ly  must  equal one of the roots 1R 2 = f2(Y) of the second equation (7). In this case, the condi- 
tion 

h ( Y )  == ]~(Y) 

determines the value of Y in the form of the function 

Y = n2/nl ~ ~p(vl, Wij ,  D~, R ,  n~), (9) 

establishing the relation between the boundary concentrations.  The explicit dependence on n i originates f rom 
the terms Ii/ni in Eqs. (5) and (6) and the explicit dependence on R appears  in the case of spherical  diffusion, 
when the kinetic pa ramete r s  Dii and uii a re  functions of R. Substitution of the function ~o into the cor respond-  
ing root of the quadratic equation t rans forms  the law of motion of the boundary into the form 

h = / l ( Y )  = / ( v l ,  Wz s, Di, .R, hi), (10) 

where the unknown functions ni(R) still enter. Turning now to Eqs. (3), taking into account the dependences 
(8)-(10),  we obtain 

ton 1 i [ /1], (11) 

IOn2 t [ W I 2 ] I ~  ] 
w -  

This sys tem determines  the boundary coneentrations n i(vi,  Wij, Di, R), and returning to Eq. (10), the velocity 
of the boundary and the dependence R (t), i.e., a set of boundary conditions on the moveable boundary is ob- 
rained for the solution of the diffusion problem in the bulk of the two-phase medium. 

The p rog ram presented must  essential ly be a se l f -consis tent  p rogram,  since the quantities Ii a re  func- 
tionals of the volume concentrations ni(x , t). In order  to real ize the p rog ram in pract ice ,  it is neces sa ry  to 
postulate f rom physical considerations the start ing values of the quantities I i. 

We shall pe r fo rm the initial stage of the solution for the par t icu lar  ease of one-dimensional  diffusion 
with constant kinetic coefficients, assuming in the f i rs t  approximation that Ii = 0. As a resu l t  of the solution 
of the sys tem (6) and (7), we obtain 

Y = n~/n 1 = q~(v~, Wij, Di) = const = n2([lo)/nl(Ro) = Yo, (12) 

and, in addition, the ratio of the initial concentrat ions is predetermined by the form of the function (p. Cor re -  
spondingly, aecording to (10), we have 

It = ]l(Yo) = ]o = const, B(t) = Ro + ]o t. (13) 

The sign of the quantity f0 gives the direction of motion. Finally, 

J f l =  t onl t t B - - R o  (14) ~ ~= ~ (71 + W~IYo - -  fo) ~ r,--' nl = nt (B~ exp  r, 

The subsequent solution of the volume diffusion problem with boundary conditions (12)-(14) gives the 
form of the functions I i (R), and the cycle (9)-(11) determines  the next approximation. In this case,  it is ap- 
parently useful to t rans form the sys tem (11), using relation (9), into the form 

DiOni/OR = (~1 --[)ni + W2in~ -- Ii, (15) 
D2On~/OR = (y~ --  ])n2 - -  Wi2ni - -  I~, 

which after  reinstat ing the dependence 1~l = f (n i, I i) becomes  a determined system. Equations (15) essential ly 
determine the boundary conditions on the moveable interface.  We note that for finite and closed sys tems,  they 
a re  nonlinear even with constant kinetic pa ramete r s  vi, Di, Wij, when the s implest  type of concentrat ion de-  
pendence f = f(I i /ni)  is realized.  The specific approximate form of the sys tem of equations (15) can be ob- 
tained by substituting into it expansions of the functions f in a ser ies  with respec t  to the corresponding quanti- 
fies. In addition, one of the equations of the sys tem obtained can be eliminated, if the coupling between n i is 
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established from the dependence (9), performing an analogous expansion for the funetion Ii/n i, i.e., assuming 

tha t  f = fo + j l / n l  + j2/n2, 1/Y = n l / n  2 = 1/Y 0 + m l / n  1 + m2/n2,  w h e r e  

a * 
ni )Ii=o 

we ob ta in  

nl--m2 0nl I ) ]2 nl 
.~  - ~ + y o ~  Y ~ ,  D~ ~ = ~ -- /o  + roW~ h ~ ~_~ _ + Yo ~, ni q- Yomf ni Yo ni __ m2 ]i - -  Ii" 

Subsequen t  c a l c u l a t i o n s  of the b o u n d a r y  c o n c e n t r a t i o n s  and the law of m o t i o n  of the b o u n d a r y  f = R involve  
purely technical details. 

Investigations of the stability of the motion of the interface, involving determination of the form of the 
dependence R = f(R), are of great practical interest. This especially concerns the problem of the evolution of 
spherical nuclei of the new phase. 

Stable motion of the interface in a single direction is possible only when the sign of the function f(R) is 
constant. If, on the other hand, the function f(R) changes sign, then the motion of the boundary is not single- 
valued. Assume that the change in sign occurs at the points Ri, i.e., f(Ri) = 0. Then in the case of 0f/0RIR=Ri 
> 0, a spherical nucleus of the new phase with initial radius R 0 > Ri will grow, while a nucleus with IR 0 < R i 
will become overgrown. For 0f/SRIR = Ri < 0, nuclei with R 0 < R i grow, while nuclei with R 0 > R i decrease in 
size. In the last variant, in the presence of only a single point RI, where f changes sign, nuclei of any size in 
their final development arrive presicely at this size R I. The sizes of the nuclei can fluctuate near this equili- 
brium va lue .  

The e x i s t e n c e  of  z e r o s  of  the funct ion  f (R)  fo l lows  f r o m  a q u a l i t a t i v e  a n a l y s i s  of the s y s t e m  of e q u a -  
t ions  (6) and (7) .  The e a s e  fR = f (R)  = 0 c o r r e s p o n d s  to van i sh ing  of  the e x p r e s s i o n  in  the b r a c e s  in the s y s -  
t e m  indicated. 

We shall limit the analysis to the development of a single spherical nucleus in an infinite medium, when 
it can be assumed that li = 0. In deriving the boundary conditions (2), attention was given to the fact that in 

the spherical variant the kinetic parameters uii and Dii depend explicitly on the radius and, in addition, 
ui~ = u{ ~ q-e~/R and Di~ = D{ ~ &JR, where the index 0 relates to coefficients at the plane boundary. For 
fR = 0, the structure of Eqs. (6) and (7) assumes the form 

(An.q-  B n / R ) n  i q- (Ai2 + BI2/R)n ~ = 0,: 

(A2i q- B~,_/R)n i q- (A~ q- B2JR)n ,  = O. 

This  s y s t e m  has  n o n z e r o  s o l u t i o n s  when i t s  d e t e r m i n a n t ,  which i s  d e t e r m i n e d  by  the q u a d r a t i c  f o r m  r e l a t i v e  
to l / R ,  v a n i s h e s .  Th i s  i n d i c a t e s  the fundamen ta l  p o s s i b i l i t y  of the e x i s t e n c e  of  two po in t s  R 1 and R2, a t  which 
R = 0. The k ine t i c  s c h e m e  of  the d e v e l o p m e n t  of nuc l e i  in th i s  c a s e  has  two b a s i c  v a r i a n t s .  If 0 f /0R IR=R1 > 
0, then 0 f / 0 R I R  =R2< 0, so tha t  n u c l e i  wi th  R 0 < 1R 1 b e c o m e  o v e r g r o w n ,  whi le  the  r e m a i n i n g  nuc le i  a p p r o a c h  
the va lue  R 2. In the o p p o s i t e  v a r i a n t ,  nuc l e i  with R 0 > R 2 g row,  whi le  the r e m a i n i n g  nuc l e i  a r r i v e  at  a s t a b l e  
s t a t e  with s i z e  R t. The s i t u a t i o n  d e s c r i b e d  i s  i n t e r e s t i n g  due to the e x i s t e n c e  of m e t a s t a b l e  nuc le i .  

Thus ,  fo r  the  c a s e  when the Mne t i c  p a r a m e t e r s  do not  depend  e x p l i c i t l y  on t i m e  and t h e r e  e x i s t s  a c l a s s  
of  s o l u t i o n s  ni -- ni (1R ( t ) ) ,  the b o u n d a r y  cond i t ions  (2) t o g e t h e r  wi th  cond i t i ons  ( 3 ) - ( 5 )  c o m p l e t e l y  d e t e r m i n e  
the b o u n d a r y  k i n e t i c s  and the l aws  of  mo t ion  of the b o u n d a r y .  The  m o r e  g e n e r a l  e a s e ,  fo r  which vi = v i ( r ,  t), 
Di = Di (R, t ) ,  and,  c o r r e s p o n d i n g l y ,  n i = n i (R, t ) ,  r e q u i r e s  f u r t h e r  a n a l y s i s .  
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